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ABSTRACT 

Step strategy is essential for both human beings and humanoid robots to keep walking 

balance. Although the capture theory has been developed as a successful step strategy for 

humanoid robots to keep walking balance under unpredictable environment, we are curious 

whether human beings use the same control algorithm to choose their foot placements. In 

this study, step controllers that have the same control structure as the capture theory were 

identified on 27 trials of perturbed walking data (nine participants, three speeds) through 

the closed-loop identification approach. The identified step controllers were able to drive 

a seven-link nonlinear gait model generating almost identical perturbation responses as the 

testing participants. In addition, identified step control gains are similar among participants 

and have relatively close but smaller values comparing to the capture theory, which means 

that the capture point is not a bad estimation but a little bit conservative in explaining 

humans’ choice. Identification results also showed that the step control gains vary based 

on walking speed, which suggests that human choosing their foot placement does not based 

on a linear function of the feedback signals, but rather a nonlinear function. Lastly, 

identified control gains are consistent among multiple periods of perturbed walking data. 

Keywords: 

Step Strategy; Walking Balance; Capture Theory; Indirect Identification; Perturbed 

Walking Data; 
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1. INTRODUCTION 

Fall has been a main issue for humanoid robots ever since they were first created. Step 

strategy is one of several strategies that can help solve the issue (Townsend 1985, Kuffner 

2002, Sugihara 2002, Stephens 2007). Concept of the step strategy is simple, which is to 

control the swing leg to take a step. In general, fall of humanoid robots and humans can 

always be prevented if the swing leg can step to the right location at the right timing. 

However, finding a useful control algorithm for the step strategy that can achieve stable 

walking could be difficult, especially in the case of unpredictable environment. One of the 

most successful attempts is the capture theory (Pratt 2006), in which it predicts the desired 

foot placement based on a linear inverted pendulum (LIP) model (Kajita 2001). Both 

simulation and hardware tests have proved its usefulness in humanoid robots to maintain 

stable walking under external perturbations (Pratt 2012). Nonetheless, the algorithm for 

estimating the desired foot placement inside the capture theory includes many assumptions. 

For instance, estimation of the desired foot placement is based on the capture point, in 

which the LIP will stop (captured) at the middle stance (Pratt 2006, Koolen 2012). While, 

healthy humans' center of mass (CoM) tends to keep a relatively constant speed during the 

entire gait period. In addition, the swing leg dynamics and the landing energy lost (heel 

strike) were not considered (Zhang 2018, Kuo 2005). Studies have pointed out that humans 

do not step on the capture point or the extrapolated center of mass (XCoM), but behind and 

outward of them (Hof 2005, Hof 2008).  

To understand what step strategy does humans use to keep walking balance, phase 

depended step controllers were extracted from both unperturbed and randomly perturbed 

walking data through linear models (Wang 2014, Joshi 2019, Seethapathi 2019).  They 
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showed that linear feedbacks from the changes of pelvis position and velocity have 

encouraging correlations with the changes of foot placement. Their work also revealed that 

the step strategy of humans can be directly extract from walking data. However, these 

phases depended step controllers may not be able to explain the correct foot placement 

when walking at a randomly perturbed situation. That is say the perturbation continuously 

exists among all gait phases. Furthermore, linear model may not be sufficient as the plant 

model to represent how human choose their foot placements which have resulted poor fit 

(Joshi 2019). Therefore, identifying the phase-independent step controllers is essential to 

understand how human beings choose their  foot placements under a randomly perturbed 

environment and to provide useful control algorithms for humanoid robots. 

The purpose of this paper is to quantitively extract the phase-independent step strategy 

controllers from human walking data. To achieve this, we identified step strategy 

controllers from randomly perturbed walking data with a nonlinear gait model through the 

indirect identification approach. The identified step controllers have the same feedback 

structure as the capture theory, but their feedback gains were identified from the perturbed 

walking data. The indirect identification approach guarantees that the identified step 

controllers are able to drive the nonlinear gait model generating expecting motion (van der 

Kooij 2008). Identification results showed that human beings use relatively close but 

smaller feedback gains to find the foot placement comparing to the capture theory. Center 

of mass (CoM) position and velocity are sufficient as feedback signals to have a good foot 

placement estimation. However, the feedback control is more likely to be a nonlinear 

function, rather than the linear function suggested by the capture theory.  
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2. METHOD 

 

Diagram plot of the indirect approach for the step controller identification is shown in 

Figure 1. The step strategy control gains were identified through trajectory optimization 

process. We assume that the correct step controllers are found if the nonlinear gait model 

can reproduce the motion of testing participants under the same perturbation. Therefore, 

the goal of this paper is to optimize the control parameters inside the locomotion controller 

to minimize the difference between the joint motion of the simulation model and the 

experimental data.  

 

Figure 1 – Plot diagram of the indirect identification approach in walking step strategy 

identification. There are two components in the identification: One is the simulation model which 

includes the human body dynamics and the locomotion control (the step strategy algorithm). 

Another component is the experimental data which includes participants' reaction during perturbed 

walking experiment. The overall goal of the indirect approach is to minimize the difference between 

the outputs of the simulation model and experimental data by optimizing the control parameters . 
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2.1. Experimental Data 

Data used in this study is from a randomly perturbed walking experiment conducted by 

Moore et al. (Moore 2015). In the experiment, participants' reactions were recorded while 

they were walking on a treadmill with continuously perturbed walking speed. Each 

participant was tested under three baseline speeds: 0.8m/s, 1.2m/s, and 1.6m/s. The motion 

capture system (Motion Analysis) and 47 markers were used to track participants' full-body 

motion. An instrumented treadmill (Motekforce) was used performing the speed 

perturbation, as well as recording the ground reaction forces. From the recorded marker 

data, participants' joint motion was calculated through the inverse kinematics using the 

Human Body Model (HBM) (van den Bogert 2013). Nine participants (Table 1) whose 
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data is in high quality (less marker missing) were selected from the whole experimental 

dataset. For the controller identification, ten seconds of perturbed walking data was 

selected for each participant at each walking speed. 

Table 1 - Information about the selected nine participants.  There are four females and five males. 

They are all young adults with the average age of 24. There are two male participants with over-

weighted BMI and one male participant in Obesity. All other participants are in normal weight 

category. 

Id Gender Age (year) Height (m) Mass (kg) Original Id 

1 Female 29 1.72 64.5 ± 0.8 7 

2 Female 32 1.62 54 ± 2 3 

3 Female 21 1.70 58 ± 2 13 

4 Female 28 1.69 56.2 ± 0.6 16 

1 Male 20 1.57 74.9 ± 0.9 8 

2 Male 20 1.69 67 ± 2 9 

3 Male 23 1.73 71.2 ± 0.9 5 

4 Male 26 1.77 86.8 ± 0.6 6 

5 Male 19 1.77 92 ± 0.2 10 

 

2.2. Human Body Model  

The human body model used in the identification is a two dimensional seven-link gait 

model (Ackermann 2010, Geyer 2010), as shown in Figure 1. It contains an upper body 

and two legs. Each leg consists of a thigh, a shank, and a foot. The whole upper body was 

modeled as a single segment. The model has 9 degree of freedoms and 6 controllable joints 

that driven by torques. In the identification, this model was scaled for each participant 

based on his/her weight and segment lengths (Winter 2009). The effect of random speed 

perturbation is modeled inside the contact model between the gait model and the ground. 

Check the supplementary material S1, for detail information of this human body model. 

2.3. Locomotion Controller 

The locomotion controller used in this paper has the similar control architecture of M2V2 

robot (Pratt 2012) which consisted with two components: the stance leg control and the 
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swing leg control (Figure 2). Open loop torques were used to control the motion of stance 

leg. A feedback control system was used to control the motion of swing leg, except that the 

ankle joint was still controlled by open loop torque. The focus of this paper is to identify 

control parameters inside the swing leg feedback control loop. Joints controlled by the 

open-loop torque have the potential to generate any motion, which eventually followed 

experimental data in the identification. The closed-loop swing leg control system includes 

four items: a foot placement controller, a swing path generator, an inverse kinematics 

component, and a local tracking controller.  

Figure 1 - Structure of the locomotion control system for the step strategy identification. The stance 

leg and the ankle joint in swing leg are controlled by open loop torques. The hip and knee joints of 

swing leg are controlled by the state feedback control loop. The purpose of open-loop torque control 

is just to let these controlled joints following the experimental data. The focus of this paper is to 

identify control parameters inside the swing leg control loop. 

 

 



8 
 

2.3.1.  Foot Placement Controller 

The function of foot placement controller is to estimate a proper foot placement for the 

swing leg. We used the same feedback control structure as in the capture theory. The basic 

foot placement estimation in capture theory is in the form of Equation (2) (Koolen 2012). 

Standing foot location is the zero reference for other moving parts. 

𝑟𝑖𝑐 =
𝑟

𝑧0
+ 

𝑟̇

𝜔0𝑧0

𝑟𝑖𝑐(∆𝑡) =  𝑧0 ∙ 𝑟𝑖𝑐(0) ∙ 𝑒
𝜔0∙∆𝑡

                                                (2) 

where, 𝑟𝑖𝑐  is the instantaneous capture point based on the state feedback; 𝑟 is the CoM 

position that projected to the ground; 𝑧0 represents the height of CoM in the LIP model; 𝑟̇ 

is the horizontal velocity of CoM position; 𝜔0 = √𝑔/𝑧0 is the reciprocal of time constant 

of the LIP model; 𝑔 represents the gravity; 𝑟𝑖𝑐(∆𝑡) is the capture point at the coming ∆𝑡 

time point; 𝑟𝑖𝑐(0) is the current instantaneous capture point. 

In the identification, the same feedback structure was used, but feedback gains were 

identified from experimental data. The identified foot placement controller is showing in 

Equation (3) and we used pelvis position and velocity as the feedback signal, instead of the 

CoM, since they are close. Standing foot location is the zero reference for other moving 

parts too. 

𝑥𝑖𝑓𝑝 = 𝑃1 ∙
𝑥𝑝

𝐿𝑙𝑒𝑔
+ 𝑃2 ∙

𝑥̇𝑝

𝜔0∙𝐿𝑙𝑒𝑔

𝑥𝑓𝑝(∆𝑡) =  𝐿𝑙𝑒𝑔 ∙ 𝑥𝑖𝑓𝑝(0) ∙ 𝑒
𝜔0∙∆𝑡

                                       (3) 

where, 𝑥𝑖𝑓𝑝 is the instantaneous desired foot placement based on the pelvis position and 

velocity feedback; 𝑥𝑝 is the relative pelvis position that projected on the ground in sagittal 

plane; 𝐿𝑙𝑒𝑔 represents the leg length;  𝑥̇𝑝 is the horizontal velocity of pelvis; 𝑃1 and 𝑃2 are 
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the two gains applied on the two feedback signals, which needs identified; 𝜔0 =

√𝑔/𝐿𝑙𝑒𝑔 is the reciprocal of the time constant of the human dynamic model; 𝑔 represents 

the gravity; 𝑥𝑓𝑝(∆𝑡) is the desired foot placement at the coming ∆𝑡 time point; 𝑥𝑖𝑓𝑝(0)  is 

the current instantaneous desired foot placement. 

2.3.2. Swing Path Generator 

The swing path generator calculates the swing trajectory of the swing ankle joint. It is a 

function of the starting swing position, desired foot placement, and total swing time. 

Considering that the overall shape of the swing paths is consistent, the normalized 

polynomial function was used to describe it. The swing path function also decomposed into 

𝑥 and 𝑦 directions to make each of the function simpler than describing together. Both 𝑥 

and 𝑦 direction polynomial functions have the same format as showing in Equation (4). 

𝑓(𝑃𝑠𝑡𝑎, 𝑃𝑑𝑒𝑠, 𝑇, 𝑡)  =  ∑ 𝐴𝑛
𝑁
𝑛=1 ∗ (𝑃𝑑𝑒𝑠 − 𝑃𝑠𝑡𝑎) ∙ (

𝑡

𝑇
)
𝑛

                         (4) 

where, 𝑃𝑠𝑡𝑎 is the swing foot location at the starting swing time; 𝑃𝑑𝑒𝑠 is the estimated foot 

placement at the ending swing time; 𝑇 is the total swing time;  𝑡 is the current swing time; 

𝑁  is the total order of the polynomial function; 𝐴𝑛  is the coefficient of the 𝑛𝑡ℎ  order 

polynomial term. 

Coefficients 𝐴𝑛 of the polynomial function were optimized over 500 experimental swing 

paths for each participant at one walking speed. See the supplementary material S2, for 

detail information of the polynomial coefficients optimization. 

2.3.3. Inverse Kinematics 

The inverse kinematics module resolves the joint angles of the swing leg to match with the 

swing foot position at each time frame. Based on the geometry of the leg, the kinematic 
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function between swing leg joint angles and ankle joint position can be described in 

Equation (5).   

𝑃𝑥  =  𝑙𝑡ℎ𝑖𝑔ℎ ∙ 𝑠𝑖𝑛(𝜃ℎ) + 𝑙𝑠ℎ𝑎𝑛𝑘 ∙ 𝑠𝑖𝑛(𝜃ℎ + 𝜃𝑘)

𝑃𝑦 = 𝑙𝑡ℎ𝑖𝑔ℎ ∙ 𝑐𝑜𝑠(𝜃ℎ) + 𝑙𝑠ℎ𝑎𝑛𝑘 ∙ 𝑐𝑜𝑠(𝜃ℎ + 𝜃𝑘)
                               (5) 

where, 𝑃𝑥 is the ankle joint position of swing leg in x direction; 𝑃𝑦 is the ankle joint position 

of swing leg in 𝑦 direction; 𝑙𝑡ℎ𝑖𝑔ℎ is the length of thigh; 𝑙𝑠ℎ𝑎𝑛𝑘 is the length of shank; 𝜃ℎ is 

the hip joint angle; 𝜃𝑘 is the knee joint angle.  

2.3.4. Local Tracking Controller 

The local tracking controller controls the hip and knee joints to track the calculated joint 

angles from the inverse kinematics module. Proportional-derivative (PD) control format 

was used to track the joint motions, shown in Equation (6). The PD control parameters are 

also optimized in the identification process. 

𝜏ℎ = 𝐾𝑝ℎ ∙ (𝜃ℎ
𝑟𝑒𝑓

− 𝜃ℎ) + 𝐾𝑑ℎ ∙ (𝜃̇ℎ
𝑟𝑒𝑓

− 𝜃̇ℎ)

𝜏𝑘 = 𝐾𝑝𝑘 ∙ (𝜃𝑘
𝑟𝑒𝑓

− 𝜃𝑘) + 𝐾𝑑𝑘 ∙ (𝜃̇𝑘
𝑟𝑒𝑓

− 𝜃̇𝑘)
                             (6) 

where, 𝜏ℎ  and 𝜏𝑘  are the hip and knee joint torques calculated from local tracking 

controllers; 𝐾𝑝ℎ and 𝐾𝑑ℎ are the proportional and derivative feedback control gains for 

hip joint; 𝐾𝑝𝑘 and 𝐾𝑑𝑘 are the proportional and derivative feedback control gains for knee 

joint; 𝜃ℎ
𝑟𝑒𝑓

 and 𝜃̇ℎ
𝑟𝑒𝑓

 are the reference joint angle and angular velocity of hip joint which 

are from the inverse kinematics component; 𝜃ℎ and 𝜃̇ℎ are the feedback joint angle and 

angular velocity of hip joint; 𝜃𝑘
𝑟𝑒𝑓

 and 𝜃̇𝑘
𝑟𝑒𝑓

 are the reference joint angle and angular 

velocity of knee joint which are from the inverse kinematics component; 𝜃𝑘 and 𝜃̇𝑘 are the 

feedback joint angle and angular velocity of knee joint. 
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2.4. Indirect Identification Approach 

The indirect identification approach finds the desired control parameters by forcing the 

closed-loop simulation model generating the similar perturbation responses as testing 

participants’. This can be considered as optimization problem, in which the control 

parameters are optimized to minimize the difference between the output of simulation 

model and the experimental data. In this step controller identification, the minimizing 

parameters are joint trajectories, instead of the foot placements directly. The definition of 

the human walking step controller identification in the optimization format is shown in 

Equation (1).  

Optimize state trajectories: 𝑥(𝑡) and control parameters: 𝑃 

Minimize the objective function: 𝐹 =  ∫ ‖𝜃𝑚(𝑡) − 𝜃(𝑡)‖
2𝑑𝑡

𝑇

0

 

Subject to: human system dynamics: 𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑃, 𝑣𝑏𝑒𝑙𝑡) = 0                  (1) 

                                  bounds on state: 𝑥𝑙𝑜𝑤 < 𝑥(𝑡) < 𝑥𝑢𝑝𝑝 

          bounds on control parameters:  𝑃𝑙𝑜𝑤  <  𝑃 <  𝑃𝑢𝑝𝑝 

where, 𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑃, 𝑣𝑏𝑒𝑙𝑡) = 0 represents the dynamic equation of the closed-loop 

human locomotion system which consisted with the gait model and state feedback 

locomotion controller; 𝑥(𝑡)is the plant model state which included joint motions q and 

joint velocities 𝑞̇; 𝜃(𝑡)represents the leg joints’ motion of the gait model, including hip, 

knee, and ankle; 𝑃 = [𝑃1, 𝑃2, 𝐾𝑝ℎ, 𝐾𝑑ℎ, 𝐾𝑝𝑘, 𝐾𝑑𝑘, 𝜏𝑜𝑝𝑒𝑛] represents the control parameters 

inside the locomotion controller; Open-loop joint torques 𝜏𝑜𝑝𝑒𝑛 are also included in control 

parameters; 𝑇 is the time length of the identified experimental data; 𝑣𝑏𝑒𝑙𝑡 is the velocity of 

the belt speed including random perturbations in the walking experiment; 𝑥𝑙𝑜𝑤 an 𝑥𝑢𝑝𝑝 are 
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the lower and upper bounds of the human system states;  𝑃𝑙𝑜𝑤 and 𝑃𝑢𝑝𝑝 are the lower and 

upper bounds of the control parameters.  

This optimization problem was solved with direct collocation method (Hargraves 1987) 

and gradient based optimizer Ipopt (Wachter 2006). Detail information of solving the 

optimization can be found in the supplementary material S3. 

The local optimum of this optimization was largely eliminated by selecting the best result 

from ten optimizations in one identification problem. In this paper, an identification 

problem was defined as one step controller identification problem on one experiment trial 

(one walking speed) of a participant. In total, there are 27 identification problems (9 

participants, 3 speed trials for each participant). Ten optimizations with random initial 

guesses were ran for one identification problem. The best identified step controller who 

can control the plant model generating the closest joint trajectories with experimental data 

were selected as the best step controller for this identification problem. Overall, 270 

optimizations were conducted in this study. They took about 500 computing hours in an 

Intel i5-8300H CPU.  

3. RESULTS 

This study identified the step control gains from perturbed walking data. Twenty-five out 

of twenty-seven identification problems were identified successfully. Table 2 shows the 

coefficients of determination (𝑅2 ) between the identified joint trajectories and the 

experimental data for all twenty-seven trials. Each number shows the highest 𝑅2 among 

ten optimizations in one identification problem. Two 'N/A' values in the table indicate 

unsuccessful identifications, in which no solution was found from optimizations. Except 

these two, all other identification problems have very high 𝑅2 values, which indicates that 



13 
 

the nonlinear gait model was able to reproduce participants’ responses with the identified 

step controllers. One comparison (participant M5 at 1.2m/s walking speed) of the joint 

motion between identified result and experimental data is shown in Figure 2. With the high 

𝑅2, the joint motion generated by the identified step controller is almost identical to the 

participant’s responses under the same belt speed perturbation. Specifically, almost every 

large and small variations among gait cycles was matched, instead of only fitting the 

average motions.  

Table 2 - Coefficient of determination (𝑅2) between identified trajectories and experiment data. 

'M' means male subjects; 'F' means female subjects. 'N/A' means the identification problem was not 

successful. 

Speed F1 F2 F3 F4 M1 M2 M3 M4 M5 

0.8 m/s 0.991 0.988 0.983 0.992 0.990 0.982 0.991 0.973 0.964 

1.2 m/s 0.992 0.993 0.989 N/A 0.989 0.977 0.991 0.981 0.983 

1.6 m/s 0.988 0.988 N/A 0.986 0.979 0.974 0.989 0.983 0.982 

 

Figure 2 - The identified joint trajectories of male participant 5 at walking speed 1.2m/s. The red 

solid line is the experimental trajectories, and the blue dash line is the identified trajectories. 
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Identified step control gains of nine participants at three walking speeds are shown in 

Figure 3. There are two gains in the step strategy as motioned in the section 2.4: position 

gain and velocity gain. These two gains are dimensionless which were normalized by the 

subjects' leg length 𝐿𝑙𝑒𝑔 and gravity g. In general, the identified gains are close to what the 

capture theory suggested (grey lines). Specifically, identified position gains have an 

average value of 0.7 and velocity gains have an average value of 0.85. Both position and 

velocity gains are smaller than one, which indicates that human tends to choose shorter 

steps. For each participant, the identified gains of three walking speed are connected with 

dash-line. Even though there are variations among participants, both single participant’s 

result and overall result clearly illustrate that there are change trends of both position and 

velocity gains change along with walking speed changes. Position gains have a small 

increase rate with the increasing of walking speed. While, the velocity gains have a large 

decrease rate with the increasing of walking speed. This suggests that constant gain in the 

feedback control structure of capture theory cannot explain the foot placement choice of 

the testing participants. In addition, control gains of male and female participants are 

plotted with solid triangle and circles, respectively. There is no significant difference 

between male and female participants. 

Figure 3 - The identified step strategy gains in the foot placement controller. The averaged similar 

best pelvis position and the velocity gains are showing in the subplot left and right, respectively. 

Female subjects are marked with solid circle and male subjects are marked with solid triangles. 

Identified gains in one participant are connected by dash lines. 
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A phase plot of one swing period is showing in Figure 4. Beside the motion of the seven-

link gait model, the green dash line is the swing path generated by an identified step 

controller. The two green dots at the left beginning and the right ending of the green dash 

line are the starting swing point and the estimated foot placement. The swing path is 

generated by the normalized polynomial function (mentioned in Section 2.4) based on the 

above starting and ending dots. This phase plot shows that the swing leg follows the 

generated swing path very well. More importantly, the desired foot placement calculated 

by the identified step controller is not a fixed point on the ground but keeps changing based 

on the participant’s motion. For instance, at 𝑡 = 0.24 second, there is a large change of the 

desired foot location due to the belt speed perturbation.  
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Figure 4 - Stick plots of one swing phase. The red leg is the swing leg, and the blue leg is the stance 

leg. The green dash line is the swing path based on the identified step strategy algorithm. The 

beginning and ending two green points are the start swing and end swing points. 

 

 

The similarity of ten optimizations and cross-check of the identified step controllers can be 

found in supplementary material S4 and S5. 

4. DISCUSSION 

In this study, control gains in the step controller which has the same feedback structure as 

the capture theory have been identified from the continuously perturbed walking data. In 

general, both identified position gains and velocity gains are small than “1” which suggests 

that testing participants chose smaller step lengths than the capture theory suggested. This 

is consistent with Hof’s founding that human step behind the extrapolated center of mass 

(same as the capture point) (Hof 2008). And this confirmed the conservative of one step 

capture point, which might be caused by losing forward velocity (captured) and lack of 

impact model (heel strike). Furthermore, the identified step control gains vary based on the 

walking speed, which does not match with the constant gains in the capture theory. This 
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reveals that test participants are using nonlinear feedback functions to estimate the foot 

placement, instead of the linear function suggested by the capture theory, if considering 

one step controller for all walking speeds. This difference may come from the 

simplification of the LIMP that the capture theory used. Even though, we are not able to 

locate the detail of reasons, this identification results can be reference to help develop more 

accurate models in foot placement estimation.  

However, the findings of the current study do not support one pervious study in human 

step strategy extraction (Wang 2014). The biggest difference is that they got phase 

dependency step strategy control gains, while our results show that one constant set of step 

strategy control gains can already explain the step length changes in the perturbed walking 

data. One possible reason is that they studied the relationship between the walking status 

of a specific phase and the foot landing position, which ignored the changes that happened 

after the studied phase.  

The indirect identification approach guaranteed that the identified step controllers are valid 

in controlling humanoid robots. This is because the nonlinear gait model (represent the 

human body dynamics) was included in the identification work. In the identification, the 

gait model served as constraints which forced the identified step strategies having the 

capability to control the gait model achieving stable and desire motion. This is equivalent 

to the forward simulation test on a human dynamic model. This is an important reason why 

we chose the indirect identification approach instead of the direct identification approach.   

Reproducing the joint motion is better than just studying the foot placement. Foot 

placement only happens once in one gait cycle which is accumulated results of all the 

previous changes or perturbation in the swing. It is impossible to decompose the final foot 
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placement information into multiple individual contributors. In contrast, the joint motion 

is continuous information which includes all the adjustments of the desired foot location. 

Analysis in Section 2.4.1 shows that the shape of the swing phase is relative consistent 

though the step lengths and swing duration lengths are different. Therefore, changes in the 

desired foot location will directly affect the swing leg joint motion by shorting or starching 

the swing path. Through kinematic, the swing leg hip and knee joint angles are directly 

affected by the changes of swing path. 

The time length of swing period was not an optimization parameter in the step strategy 

identification. We predefined the stance and swing periods for each gait cycle based on the 

experimental data. One reason of doing this is because we want to keep our large scaling 

identification problem solvable by gradient based optimizer, in which a consistent structure 

of the Jacobin is needed. In each of the identification problem, around 10000 parameters 

and constraints were optimized, in which the size of Jacobin is about 10000×10000. Using 

the sparse structure to more efficiently store the Jacobin matrix is essential for our 

identification. The Jacobian structure will change if the number of direct collocation nodes 

for the stance and the swing phase changed. In addition, adding the swing duration time as 

an optimizing parameter will make the optimization slower and harder to solve. On the 

other hand, since the goal of the identification is to reproduce the joint motions, fixing the 

swing period will automatically guarantee that the swing period is the same as experimental 

data once a solution is found. It didn’t not affect the identified results since swing time is 

not the target of identification. 

Pelvis position and velocity are used in this study to represent the CoM position and 

velocity.  One reason is because the pelvis position and velocity are easier to get from the 
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gait model that we used. In addition, the CoM position is very close to the pelvis while 

walking. Besides, only the horizontal position and velocity of the CoM are used for 

feedback and the trunk rotation is small in walking. Therefore, horizontal position and 

velocity of the CoM are close enough to the pelvis, and it is acceptable to use the pelvis 

motion to represent the CoM motion. 

The gains in local tracking controllers for the hip and knee joints were also optimized in 

the step strategy identifications. However, the results of them are not the main concerns in 

this study. In practice, these local tracking gains are designed based on the body dynamics.  

In humanoid robots, local tracking controller is usually designed based on the specific 

structure of the robot hardware and our identified gains cannot provide a good reference. 

In addition, PD control structure is not the only structure that can achieve the local joint 

tracking. However, it is better to optimize these gains in our identification work other than 

pre-select the values, since manually setting the local tracking gains will limit the tracking 

ability and may affect the identified step strategy controllers. 

This study isn’t perfect duo to several simplifications. First of all, the estimated foot 

placement from the identified step controller was the ankle joint position, which does not 

count the center of pressure (CoP) changes in the feedback control. However, the CoP 

changes in the closed-loop gait system itself  was considered from the motion of ankle joint, 

which followed the experimental data. The step controller identification which considering 

CoP changes is possible, since the nonlinear gait model we used has the potential of 

calculating the CoP. This will be included in our future study. In addition, the identified 

step controllers in this study were only about the step length,  since a two-dimensional gait 

model was used here. This 2d gait model is relatively computing friendly comparing to 
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three-dimensional nonlinear gait models. We insisted to use highly nonlinear gait models 

because they allow us to study joint motions instead of the foot placement only. The 

advantage of study joint motion comparing to foot placement is mentioned before. With 

the identification frame work used in this study, it is not hard to identify three-dimensional 

step controllers also buy using three -dimensional gait model. 

5. CONCLUSION 

In this study, step controllers that have the same feedback structure as the capture theory 

were successfully identified from walking experiment data. Identification results suggested 

that the capture point is not a bad estimation but a little bit conservative in explaining 

humans’ step choice. In addition, human choosing their foot placement does not based on 

a linear function of the feedback signals, but rather a nonlinear function. 
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The appendix contains the following sections:  

 

⚫ Section S1 lists the dynamic equations of the nonlinear gait model described in 

Figure 1 of the main manuscript.  

⚫ Section S2 provides the information about the normalized polynomial function for 

the swing phase generator 

⚫ Section S3 provides the trajectory optimization problem in the direct collocation 

format 

⚫ Section S4 gives information of the similarity of the identified step control gains 

among ten optimizations. 

⚫ Section S5 provides information of the cross-check.  

 

S1 Dynamic equation of the nonlinear gait model  

Gait Model Dynamics. The gait model used in this study is a two dimensional seven-

link dynamics model (Figure 1), which has been used in many gait studies [1-2]. The 

dynamic equation of this seven-link gait model was generated using Kane’s method 

through AUTOLEV [3].  The dynamic equation is in the format of general robotics: 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞)  =  𝑇𝑗𝑜𝑖𝑛𝑡  + 𝑇𝑔𝑟𝑓 , where 𝑞 =

 [𝑥, 𝑦, 𝜃𝑡𝑟𝑢𝑛𝑘, 𝜃𝐿ℎ𝑖𝑝, 𝜃𝐿𝑘𝑛𝑒𝑒 , 𝜃𝐿𝑎𝑛𝑘𝑙𝑒 , 𝜃𝑅ℎ𝑖𝑝, 𝜃𝑅𝑘𝑛𝑒𝑒 , 𝜃𝑅𝑎𝑛𝑘𝑙𝑒]
𝑇
 represents  motion variables 

of the gait model, including pelvis motion and joint angles; 𝑀 represents the mass matrix 

of the gait model and is a function of motion variables 𝑞; 𝐶 represents the Coriolis matrix 

and is a function of motion variables 𝑞 and velocity variables 𝑣; 𝐺 represents the gravity 

matrix and is a function of motion variables 𝑞; 𝑇𝑗𝑜𝑖𝑛𝑡 represents the external joint torques 

and 𝑇𝑔𝑟𝑓 represents the effect of ground reaction force applied on the gait model. 
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Contact Model.  The contact model between the gait model and ground is modeled as a 

nonlinear spring-damper system in the vertical direction [2]. In the horizontal direction, a 

coulomb friction model that smoothed by a logistic function was included. The effect of 

speed perturbation in this gait model is modeled as relative speed changes in the contact 

model. In each foot, there are two contact points (heel and toe). The vertical and 

horizontal contact forces are calculated from the following equations. 

𝐹𝑦 = 𝐾𝑝 ∙ 𝑑 ∙ (1 −  𝐾𝑑 ∙ 𝑑̇) 

𝐹𝑥 = − 𝐶𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝐹𝑦 ∙ (
2

1 + 𝑒
−(𝑣𝑥−𝑣𝑔𝑟𝑜𝑢𝑛𝑑)

𝑣0

 −  1) 

 

where, 𝐹𝑦 is the vertical contact force; 𝐹𝑥 is the horizontal contact force; 𝐾𝑝 is the 

stiffness of the ground; 𝑑 =
√𝑦2+𝜎2 − 𝑦

2
 is the constraint vertical position of contact point, 

which limited that valuable vertical ground reaction force only exist when contact point 

interact with ground; 𝐾𝑑 is the damping property of the ground; 𝑑̇ is the constraint 

vertical velocity of the contact point;  𝐶𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is the horizontal friction coefficient of the 

ground; 𝑣𝑥 is the horizontal velocity of the contact point; 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 is the horizontal 

velocity of the ground; 𝑣0 is the parameter which determines how large the difference 

between contact point velocity and ground velocity when friction force appears. 

 

The contact model was modeled with continuous functions in which gradients are always 

exist. This guaranteed that the plant model in loop optimization can be solved by gradient 

based method. Considering that ground contact forces are functions of the position and 

velocity of contact point which are functions of the gait model state, the dynamic 

equation of the gait model with ground contact can be written in the format of 𝑀(𝑞)𝑞̈ +

𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞)  −  𝐸(𝑞, 𝑞̇, 𝑣𝑔𝑟𝑜𝑢𝑛𝑑)  =  𝑇𝑗𝑜𝑖𝑛𝑡. In which the contact model is included 

in the 𝐸(𝑞, 𝑞̇, 𝑣𝑔𝑟𝑜𝑢𝑛𝑑) component.  

 

Closed-loop Model. The step controller identified in this study is a state feedback 

controller which has the format of  𝑇𝑗𝑜𝑖𝑛𝑡  =  𝑓(𝑃, 𝑞, 𝑞̇), in which 𝑃 represents control 

parameters. Combine this state feedback controller with gait model and contact model, 

the dynamic equation of the closed-loop system can be written as 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ +

𝐺(𝑞)  −  𝐸(𝑞, 𝑞̇, 𝑣𝑔𝑟𝑜𝑢𝑛𝑑)  −  𝑓(𝑃, 𝑞, 𝑞̇)  = 0. In simplification, it can be written in the 

format of: 𝐹(𝑞, 𝑞̇, 𝑞̈, 𝑃, 𝑣𝑔𝑟𝑜𝑢𝑛𝑑) = 0. 
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S2 Normalized polynomial function for the swing foot 

The swing foot trajectory is described as normalized polynomial functions in both 

vertical and horizontal directions. Coefficients of the polynomial function were optimized 

to fit with the swing paths in experimental data. For each participant at one walking 

speed, swing paths from over 500 gait cycles were used to optimize the coefficients. An 

example of the swing paths from one participant at one walking speed are showing in 

Figure 1. The swing path is relative motion which is relative to the pelvis point  

Figure 1 - Swing trajectories from the experimental data. Subplot 1) shows the swing trajectory in 

the swing phase. It starts at the swing starting position and finishing at the touch down point. 

Subplot 2) shows the swing trajectory shape in the 𝑥 and 𝑦 directions over 500 gait cycles. The 

swing path of the ankle joint is relative to the pelvis position. 

 

The optimization problem of the polynomial coefficients is regular optimization problem 

which is defined in follow: 
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Optimize coefficients 𝐴𝑛 

Minimizing the objective function:  

                                  𝑜𝑏𝑗 = ∑ ∫ (𝑓𝑝𝑎𝑡ℎ
𝑖 (𝑡)  −  𝑓𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑖 (𝐴𝑛, 𝑡))
2 ∙ 𝑑𝑡

𝑇𝑖
𝑡 =0

𝑀
𝑖=1  

Subject to:  𝑓𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
𝑖 (𝐴𝑛, 0)  =  𝑓𝑝𝑎𝑡ℎ

𝑖 (0), 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑀                   

                                    𝑓𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
𝑖 (𝐴𝑛, 𝑇)  = 𝑓𝑝𝑎𝑡ℎ

𝑖 (𝑇) , 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑀 

where, 𝐴𝑛 represents coefficients of the polynomial function; 𝑀 represents the total 

number of the experimental swing paths; 𝑓𝑝𝑎𝑡ℎ
𝑖 (𝑡) represents the 𝑖𝑡ℎ  experimental swing 

path; 𝑇𝑖 represents the swing time length for the 𝑖𝑡ℎ experimental swing path; 

𝑓𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
𝑖 (𝐴𝑛, 𝑡) = ∑ 𝐴𝑛

𝑁
𝑛=1 ∗ (𝑓𝑝𝑎𝑡ℎ

𝑖 (𝑇) − 𝑓𝑝𝑎𝑡ℎ
𝑖 (0)) ∙ (

𝑡

𝑇𝑖
)
𝑛

 represents the path 

generated by the normalized polynomial function for the 𝑖𝑡ℎ experimental swing path 

with the coefficients 𝐴𝑛;  

 

Constraints of the optimization guaranteed that the normalized polynomial function 

starting and ending with the same values as experimental swing paths. The optimization 

problem is solved by using the minimize function in python scipy.optimize package [4]. 

Different orders of the polynomial functions, from first and sixth, were optimized to find 

the number of orders that holds the best fit. Based on the fitting results, fifth order 

polynomials are selected for both 𝑥 and 𝑦 directions of the swing path. RMS of different 

orders of the normalized polynomial functions with experimental data and one example of 

the swing path fit are shown in Figure 7. 

 

Figure 5 - Fits between the optimized polynomial functions and the experimental swing paths. 

Subplot 1) shows the means and standard deviation of the difference between the polynomial 

functions and experimental data. Fit get better with the increase of the degree of polynomial 

functions. Subplot 2) shows one example of the fit for one optimized polynomial function. In which, 

the best, median, and worst fits in over 500 experimental swing trajectories are shown. 
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S3 Solving the identifications as nonlinear programing problems 

As mentioned in the main manuscript, the identification problem is also a trajectory 

optimization problem. In order to solve the trajectory optimization, the direct collocation 

method was used in this paper. It transformed the trajectory optimization problem into a 

nonlinear program (NLP) with a finite number of unknowns: the state vector 𝑥  at 𝑁 
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collocation nodes, and the controller parameters 𝑃. Backward Euler approximation was 

used to convert the body dynamics constraint into a series of constraints: 

Optimize Y = [𝑥1,  𝑥2,  … ,  𝑥𝑁 ,  𝑃]  

Minimize 𝐹(𝑌) = ∑ ‖𝑥𝑖
𝑚 − 𝑥𝑖‖

2𝑁
𝑖=1  

Subject to:  h(Y) =  

{
 
 
 

 
 
 
[
𝐹(𝑥2,  𝑥̇1,  𝑃,  𝑣𝑏𝑒𝑙𝑡,2) = 0

…
𝐹(𝑥𝑁 ,  𝑥̇𝑁−1,  𝑃,  𝑣𝑏𝑒𝑙𝑡,𝑁) = 0

]

[
𝑥1
𝑙𝑜𝑤 ≤ 𝑥1 ≤ 𝑥1

𝑢𝑝𝑝

…
𝑥𝑁
𝑙𝑜𝑤 ≤ 𝑥𝑁 ≤ 𝑥𝑁

𝑢𝑝𝑝
]

𝑃𝑙𝑜𝑤 ≤ 𝑃 ≤ 𝑃𝑢𝑝𝑝

 

The direct collocation method used in this paper helped avoid forward simulation of the 

nonlinear gait model by setting up constraints [5]. Forward simulation of this nonlinear gait 

model could be painful, since fall could be a big issue. In the format of nonlinear 

programing, many commercial optimizers can be used to solve them efficiently. In the 

direct collocation, the number of collocation nodes was set as 50 per second, and gradient 

based interior pointer optimizer IPOPT was used to solve the NLP [6].  

 

S4 Similarity of the identified control gains among  ten optimizations 

To increase the confidence that the identified step strategies are not a bad local optimum 

result, how many times the similar best results appeared in each identification problem (ten 

optimizations) were checked (Table 2). The similar best results were defined within 5% 

variation when comparing the root-mean-square (RMS) of the difference between the 

identified trajectories and the experimental data. In most identification problems, the 

similar best results were found more than once, which suggests that the identified step 



 30  
 

controllers are more likely not the bad local solutions. The standard deviation of the control 

gains in the corresponding best similar results are shown in Table 4 and Table 5. In general, 

they are less than 5%, which means that the identified step strategies among the similar 

best fits are similar. This, in another aspect, suggests that the identified step controllers are 

good results. 

Table 3 - The number of similar best results in each identification problem. In most of the 

identification problems, similar best results were found more than once. Only six out of twenty-

seven identification problems found one similar best result. There are two identification problems 

which were not successful in finding feasible results.  

Speed F1 F2 F3 F4 M1 M2 M3 M4 M5 

0.8 m/s 4 2 2 1 7 5 5 1 1 

1.2 m/s 4 8 2 0 4 2 3 9 3 

1.6 m/s 2 1 0 1 7 2 1 8 2 

 

 

Table 4 - The standard deviation of the similar best results as a percentage of the averaged position 

feedback gains. For the identification problems which have no solution, or only one best result, 

there is no standard deviation and 'N/A' was wrote. 

Speed F1 F2 F3 F4 M1 M2 M3 M4 M5 

0.8 m/s 5.34% 4.21% 2.47% N/A 2.34% 2.44% 3.56% N/A N/A 

1.2 m/s 3.39% 1.66% 1.58% N/A 0.69% 0.45% 3.80% 2.56% 1.17% 

1.6 m/s 0.43% N/A N/A N/A 1.73% 1.82% N/A 1.53% 0.16% 

 

 

Table 5 - The standard deviation of the similar best results as a percentage of the averaged velocity 

feedback gains. For the identification problems which have no solution, or only one best result, 

there is no standard deviation and 'N/A' was wrote. 

Speed F1 F2 F3 F4 M1 M2 M3 M4 M5 

0.8 m/s 0.14% 0.13% 0.49% N/A 0.69% 0.71% 0.67% N/A N/A 

1.2 m/s 0.30% 1.62% 1.81% N/A 0.45% 0.54% 1.93% 1.97% 1.68% 

1.6 m/s 0.65% N/A N/A N/A 0.60% 0.34% N/A 1.29% 0.30% 
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S5 Cross check of the identified control gains 

To make sure that ten seconds experimental data is sufficient to identify the two feedback 

gains in the step controllers, cross check of the identified control gains was done. Beside 

the ten seconds perturbed walking data used in the identification in the main manuscript, 

we also identified the step strategy on another ten- and twenty-seconds perturbed walking 

data, which did not show significant differences with the results on the ten seconds data 

(Figure 8). One-way ANOVA tests showed that there is no significant difference (P > 0.05) 

between the three periods. Tests on the gains of different speeds showed that there is 

significant difference (P < 0.05 for position gain, P < 0.05 for velocity gains) between three 

speeds. Since joint motion is the reproducing target in this research, instead of the foot 

placement, ten seconds perturbed walking data contains enough information for identifying 

the two feedback gains. 

Figure 8 – Comparison of the identified control gains among three periods of experimental data. In 

which, period 1 is the 10 seconds experimental data mentioned in the Result section; period 2 is the 

20 seconds experimental data which includes the period 1 data; period 3 is another 10 seconds 

experimental data away from the period 1 and 2. There is no significant difference of the identified 

control gains among the three data periods. However, there is a significant difference of the 

identified control gains among the three speeds.  
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