
Highlights

1. Stochastic identification helps avoid finding unstable human postural

controllers.

2. It tracked the experimental data nearly as well as deterministic identi-

fication.

3. Comparing to eigenvalue constraints, linearization is not needed in it.

4. It can be applied on highly nonlinear systems and large data-sets iden-

tifications.
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Abstract

Background: System identification can be used to obtain a model of the hu-

man postural control system from experimental data in which subjects are

mechanically perturbed while standing. However, unstable controllers were

sometimes found, which obviously do not explain human balance and can-

not be applied in control of humanoid robots. Eigenvalue constraints can be

used to avoid unstable controllers. However, this method is hard to apply to

highly nonlinear systems and large identification datasets.

New method: To address these issues, we perform the system identification

with a stochastic system model where process noise is modeled. The param-

eter identification is performed by simultaneous trajectory optimizations on

multiple episodes that have different instances of the process noise.

Results: The stochastic and deterministic identification methods were tested

on three types of controllers, including both linear and nonlinear controller
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architectures. Stochastic identification tracked the experimental data nearly

as well as the deterministic identification, while avoiding the unstable con-

trollers that were found with a deterministic system model.

Comparison with Existing Method: Comparing to eigenvalue constraints,

stochastic identification has wider application potentials. Since lineariza-

tion is not needed in the stochastic identification, it is applicable to highly

nonlinear systems, and it can be applied on large data-sets.

Conclusions: Stochastic identification can be used to avoid unstable con-

trollers in human postural control identification.

Keywords: Human standing balance, indirect identification, feedback

controller, stability, stochastic environment
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1. Introduction

Feedback control is a well accepted paradigm for human postural balance

(Kuo, 1995). Identification of a feedback control system from human exper-

iments has several important applications. In neuroscience, control system

models are used to understand how humans maintain balance. In clinical ap-

plications, a quantitative description of the control system, e.g. as feedback

gains and time delays, may have clinical applications. Finally, in humanoid

robotics, a control system identified from human subjects can produce behav-

ior that is more human-like than a control system designed from conventional

control engineering principles.

System identification methods have been used, in both frequency and time

domains, to identify feedback controllers from human experiments (Peterka,

2002; Park et al., 2004; Van Der Kooij and De Vlugt, 2007). In the fre-

quency domain, information of human neuromuscular control were identified

on experimental data with multiple random perturbations (Peterka, 2002;

Van Der Kooij and De Vlugt, 2007; Boonstra et al., 2013; Kiemel et al.,

2011; Engelhart et al., 2016; Afschrift et al., 2016). In the time domain,

parametric controllers were usually identified and it has been shown that one

perturbation is sufficient for multiple-input multiple-output (MIMO) sys-

tem identification (Goodworth and Peterka, 2018). For instance, full-state

proportional-derivative (FPD) controllers were identified on short experimen-

tal data where ramp perturbations were applied to the standing surface. Re-

sults showed that controller gains were proportional to the amplitudes of

ramp perturbations (Park et al., 2004; Welch and Ting, 2009), which sug-
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gests a nonlinear control system.

However, one common issue of the time domain identification work is that

the best fit to the experiment was sometimes achieved with a controller that

causes the closed loop system to be unstable. (Park et al., 2004; Goodworth

and Peterka, 2018). While the best fit controller is always treated as the

best identified controller, it is not useful since it can neither be applied to

humanoid robots nor explain how humans control themselves. One possible

reason of finding unstable controllers is that the process noise in both human

system and experiment is not modeled. The identified controllers may take

advantage of instability and sensitivity to initial conditions to achieve the

best fit without falling.

To avoid instability, eigenvalue constraints have been used in the controller

identification. It enforces eigenvalues of the modeled closed loop system to be

negative at a specific pose while identifying the controller parameters. This

method was successful in avoiding unstable linear controllers in standing

balance identification under ramp perturbations (Park et al., 2004). How-

ever, the application of this method is limited. For instance, it cannot work

with highly nonlinear systems, since only a limited set of linearization points

can be checked. For complex tasks such as walking, this could become im-

practical. In addition, it is hard to incorporate eigenvalue constraints into

identifications with long experimental recordings, in which gradient-based

optimization and collocation methods are needed. Long recordings, under

continuous random perturbation, are needed to collect sufficient informa-
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tion to identifying more complex posture controllers. Direct collocation has

been reported to be more efficient in such parameter identification problems

(Kelly, 2017; Moore and van den Bogert, 2018).

In this paper, we hypothesize that a stochastic optimization, in which process

noise is modeled, can help avoid finding unstable controllers in the standing

balance identification problem. The stochastic optimization was applied on

the identification of three types of controllers. Eigenvalue and forward sim-

ulations tests were done to examine the stability of the identified systems.

2. Method

An indirect identification approach was used in this study (Peterka, 2002;

Park et al., 2004; Van Der Kooij and De Vlugt, 2007; Goodworth and Pe-

terka, 2018). In the indirect approach, a model is built, which mathematically

represents the closed loop system and an optimization method is used to fit

experiment data by optimizing the model parameters. It has been reported

that, in identifying the feedback controllers, the indirect approach can avoid

the bias introduced by the direct approach which only uses the information

of controller input and output (van der Kooij et al., 2005). In this paper,

the mathematical model of the human standing balance system was treated

as a closed-loop system which includes a body dynamics model and a feed-

back controller. The body dynamics model was simplified as a double-link

pendulum, since ankle and hip strategies are mostly used for standing bal-

ance (Horak and Nashner, 1986). Three feedback controllers, as described

below, were identified. The goal of the identification is to find the feedback
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controller parameters P which enable the closed-loop system generate the

response that is closest to the human experimental data (Fig. 1).

Figure 1: For identification of controller parameters, the same perturbation which was

applied in the experiment was applied to the closed-loop system model. Controller pa-

rameters are optimized to fit the experimental data. The experimental data (140 seconds)

was divided into 3 sections. The first 100 seconds (blue) were used to identify the linear

controllers. The first 10 seconds (green) were used to identify the nonlinear controller.

The last 40 seconds (red) were used to verify all identified controllers.

2.1. Experiments

Experiments were performed on six participants (five male, one female, age

18-34 years) with approval from the Institutional Review Board of Cleve-

land State University with the study number IRB-FY2018-40. A R-Mill in-

7



strumented treadmill (Forcelink, Netherlands) was used to induce anterior-

posterior (AP) perturbations of the standing platform through its ”sway”

mechanism. Participants were asked to stand with their arms crossed in

front of their chest and instructed to keep balance without taking a step.

The perturbation signal was designed using random square pulses with five

amplitudes ([-5, -2.5, 0, 2.5, 5] cm), and six pulse durations ([0.25, 0.5, 0.75,

1.0, 1.25, 1.5] seconds). Amplitudes and durations were randomly selected to

generate a 140 second perturbation signal. Twenty-seven reflective markers

were placed on each participant to record their reactions using a 10-camera

motion capture system (Osprey 00882967, Motion Analysis Corp. Santa

Rosa, CA). Hip and ankle joint motions were calculated from the recorded

marker data, and the platform motion was recorded from encoders. The com-

manded perturbation signal, actual perturbation signal (standing platform

motion) and balance reaction data (ankle and hip motion) of one participant

can be found in Fig. 1. Data from one participant was used to show how

the modeling of a stochastic environment affects the stability of identified

controllers.

2.2. Controller Structures

Three feedback controllers were identified on the data described in Section

A. Two of them are linear: a proportional-derivative (PD) controller and a

full-state proportional-derivative (FPD) controller. The other one is nonlin-

ear: neural network (NN) controller. Formulas of these three controllers are

shown below:
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PD controller:

Ta
Th

 =

Kpa 0 Kda 0

0 Kph 0 Kdh



θa − θra
θh − θrh
θ̇a

θ̇h

 (1)

FPD controller:

Ta
Th

 =

Kpaa Kpah Kdaa Kdah

Kpha Kphh Kdha Kdhh



θa − θra
θh − θrh
θ̇a

θ̇h

 (2)

where Ta and Th are ankle and hip joint torques; θa and θh are ankle and

hip joint angles; θra and θrh are the reference joint angles for ankle and hip at

quiet standing; θ̇a and θ̇h are ankle and hip joints angular velocities; Kp and

Kd are proportional and derivative gains of feedback controllers.

For the nonlinear controller, a standard neural network architecture (Jain

et al., 1996) with 1 hidden layer and 4 hidden nodes was used. The inputs

are the system state and a constant value node, and the outputs are joint

torques. The smoothed leaky-ReLU function was used as activation function

and is showing in Equation .3. The reason to smooth the activation function

is make it continuously differentiable, which is essential to gradient-based

optimization.

f(x) = x+ 0.7(
x−
√
x2 + 0.0001

2
) (3)
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The control parameters in the two types of linear controllers are the proportional-

derivative gains K and reference joint angles θr. The control parameters in

neural network are the weights Wij applied in between the input layer, the

hidden layer, and output layer. The total number of controller parameters

in the PD, FPD, and NN controllers are 6, 10 and 30, respectively.

2.3. Controller Identification in Deterministic Environment

Deterministic environment, without modeling of process noise, has been used

in most controller identification studies (Park et al., 2004; Van Der Kooij and

De Vlugt, 2007; Goodworth and Peterka, 2018). The deterministic standing

balance controller identification problem was defined as a combined trajec-

tory and parameter optimization problem:

Optimize trajectory x(t) and control parameters P

Minimize objective function F =

∫ T

0

‖θm(t)− θ(t)‖2dt

Subject to: body dynamics: f(x(t), ẋ(t), P, a) = 0

(4)

where x(t) is the state trajectory of the identified system, including ankle/hip

joint angles θ and angular velocities θ̇; P represents the control parameters

inside the feedback controller; T is the total time period of the measured

experimental data; θm is the measured joint angles; θ is the optimized joint

angles; a represents the acceleration of perturbation;

2.4. Controller Identification in Stochastic Environment

In a stochastic environment, process noise is considered in the controller

identification process. In controller identification with stochastic environ-
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ment, the optimization is carried out over multiple episodes. Each episode

simulates the motions with the same controller, and the same perturbation

signal, but with a different process noise signal. The identification problem

for the stochastic environment is defined below:

Optimize trajectory {x1(t), ..., xM(t)} and Controller Parameters P

Minimize objective function: F =
M∑
s=1

(∫ T

0

‖θm(t)− θs(t)‖2 ∗ dt
)

Subject to: body dynamics:



f1(x(t), ẋ(t), P, a) + n1(0, σ) = 0

......

fs(x(t), ẋ(t), P, a) + ns(0, σ) = 0

......

fM(x(t), ẋ(t), P, a) + nM(0, σ) = 0



(5)

where M is the total number of episodes; s is the sth episode; xs(t) is the

state trajectory of human system model in sth episode; ns(0, σ) is random

noise added to sth episode.

The direct collocation method (Hargraves and Paris, 1987) was used in this

paper. This transforms the trajectory optimization problem into nonlinear

program (NLP) with a finite number of unknowns: the states x at N col-

location nodes, and the controller parameters (Moore and van den Bogert,

2015, 2018). The Midpoint Euler approximation was used to convert the

body dynamics constraint into algebraic constraints:

f(
xi+1 + xi

2
,
xi+1 − xi

h
, P, a) = 0, for i = 1, 2, ..., N − 1. (6)
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The number of collocation nodes was 50 per second, and IPOPT was used

to solve the NLP (Wächter and Biegler, 2006).

Four identification problems were solved for each controller structure. For

each controller, a deterministic identification was performed first. For the lin-

ear controllers (PD, FPD), stochastic identifications with 2, 3, and 4 episodes

were performed. For the nonlinear neural network controller, stochastic iden-

tification were performed with 6, 8, and 10 episodes. The process noise was

modeled as Gaussian random noise with amplitude of ± 0.25 Nm, added to

the controller outputs (joint torques) at each time step. The process noise

in each episode was randomly generated, and kept the same during the op-

timization process. For each identification problem, 10 optimizations with

random initial guesses were performed. By selecting the best fit with ex-

periment data among 10 optimizations, local optimum results can be largely

prevented.

2.5. Stability evaluation

Eigenvalues and forward simulations were used to evaluate the stability of

the closed loop standing balance system with the identified controllers. In

the eigenvalue test, the closed loop system dynamics were linearized to ob-

tain eigenvalues at different operating points. These points covered the range

of motion observed in the experiment. In the forward simulation tests, the

identified controllers were used to perform 40 seconds simulations with all

possible initial conditions inside the experiment data range. The pertur-

bation (in red block) used in the forward simulation was different from the

perturbation used in identifications. No process noise was used in these tests.
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The distribution of four state variables (ankle angle, hip angle, ankle angular

velocity, hip angular velocity) in the experimental data is shown in figure

2A. Ranges of these four state variables in degree (degree/s) are between [-

3.87, -9.49, -16.53, -50.74] and [2.41, 11.50, 18.38, 65.00]. To check the stability

of identified controllers in a standard way, eleven equidistant values were

chosen within the range of each state variable, resulting in 11 ∗ 11 ∗ 11 ∗ 11 =

14641 operating points where eigenvalues were calculated. The percentage

of stable operating points (all eigenvalues negative) was calculated. Forward

simulation tests used each of these operating points as an initial condition.

A simulation was considered stable if the root mean square (RMS) between

the forward simulations and the experiment data was within 3 times the

standard deviation of experiment data. The percentage of stable simulations

was calculated for each identified controller. The eigenvalue and forward

simulation tests were performed using the Ohio Super Computer System

(Center, 1987).

3. Results

Results of the identifications are summarized in Fig. 2. The percentage of

stable eigenvalues and forward simulations (Fig. 2b) is always below 100%.

One reason is that many of the checking points were outside of the range of

actual state trajectories. Nevertheless, the effect of identification method on

stability was clearly seen.

In the PD and NN controllers, results show that mostly stable controllers can
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be found by introducing a stochastic environment, while unstable controllers

were found in the deterministic identifications. When the stochastic environ-

ment was introduced and the episode number increased to a specific number

(3 episodes for PD controller type, 8 episodes for NN controller type), stable

controllers were found, which resulted in high percentages of stable eigenval-

ues and stable forward simulations.

In the FPD control architecture, the deterministic identification already pro-

duced stability in about half of the tests. With the stochastic environment

(2, 3, and 4 episodes), the percentage of stable eigenvalues and forward sim-

ulation remained high.

4. Discussion

Our results confirmed previous findings of unstable controllers when a deter-

ministic model is used for identification of the human postural control system

(Park et al., 2004; Goodworth and Peterka, 2018). The optimization is likely

taking advantage of instability to improve the fit. In a deterministic unstable

system, the final state can be made equal to the corresponding measurement,

by extremely small changes in initial condition or controller parameters. We

hypothesized that with a stochastic model, the optimization can no longer

take advantage of instability to improve the fit with the experiment. The sta-

bility tests using eigenvalue analysis and forward simulation tests supported

our hypothesis. We also found that stochastic approach did not effect the

stability very much when the deterministic approach already found a stable

controller. Identified control gains and eigenvalue distributions of PD and
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Figure 2: Eigenvalue and forward simulation test of identified best controllers among

the whole state points. Subplot A is the range of each state variable from the human

standing experiment data. subplot B is the percentages of stable eigenvalue and stable

forward simulations of all 12 identified best controllers at all selected state points. ”DET”

means deterministic optimization. ”STO i” means stochastic optimization with i episodes.

Subplot C is one comparison between forward simulation and experiment data. RMS of

this this forward simulation is about 1.3 STD of experiment data.

FPD controllers are shown in Appendix. In general, stable controllers iden-

tified from stochastic model are close to these unstable controllers identified

through deterministic approach.

The eigenvalue analysis and forward simulation tests were mostly in agree-

ment about the stability of the system, except in the NN controller. This

is not surprising because linearization may not give a reliable evaluation of
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stability in a system with strong nonlinearities. This finding also suggests

that the use of eigenvalues as constraints in the identification problem (Park

et al., 2004) is not likely to give useful results for nonlinear controllers. In

contract, the stochastic trajectory optimization presented here is directly ap-

plicable to nonlinear systems without linearization.

Generally, more episodes were needed to find stable best controllers for more

complex controllers with more free parameters. In the case of our study,

identification of a stable PD controller requires three episodes, while identi-

fication of a stable NN controller required eight episodes to get stable con-

trollers. Because controller parameters (which are the same in each episode)

and free initial conditions (which are different in each episode) can both be

used to take advantage of instability, we suspect that the required number

of episodes equals the number of control parameters divided by the number

of system state variables.

The amplitude of Gaussian noise used in this paper was 0.25 Nm, applied to

the joint torques of human balance system. This is approximately one per-

centage of the standard deviation of the joint torques in the standing balance

experiment. An amplitude of 0.5 Nm was also tried, which had the same

stability effect of 0.25 Nm but resulted in slightly larger control parameter

differences between the identified stable controllers.

Recently, similar ideas of using a stochastic environment were also used in

other studies to get realistic and stable results in robotic control. Mordatch
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increased the success rate of path planning in a biped robot by adding model

uncertainty (Mordatch et al., 2015). Policies for robot arm control were

obtained by reinforcement learning in a simulated stochastic environment,

making them robust enough for transfer to hardware (Peng et al., 2018).

Although these control optimization studies were not system identifications

from experimental data, they share with our work the use of a simplified

model of the real system. In order to avoid overly specialized controllers,

stochastic dynamics can be used to produce better and more realistic solu-

tions.

5. Conclusion

In this work, we showed that identification of human standing balance con-

trollers by stochastic trajectory optimizations will produce controllers that

are more robust than those obtained with a deterministic system model.

When applied in robotic systems, these identified controllers will result in

human-like behavior that is stable against small perturbations.
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Appendix

1. Gains and eigenvalue distributions of identified controllers in both deter-

ministic and stochastic environments.

Identified control gains of PD and FPD control structures are shown in Table

1 and 2. Weights of neural network controller is not shown here, since they

do not have a realistic meaning. Eigenvalue distributions of the identified PD

and FPD controllers are shown in Table 3 and 4. Eigenvalues are calculated

at the neutral pose (standing straight) which is close to the close-loop system

equilibrium point. Eigenvalue of neural network controllers are not shown

either, since eigenvalue at one point does demonstrate stability for nonlinear

systems. All proportional gains Kp shown blow have a unit of Nm/rad. All

derivative gains Kd shown blow have a unit of Nm ∗ s/rad. All reference

angles Ref have a unit of rad. In the Table II (FPD controllers), foot xy

after Kp and Kd means the signal transfer path from x to y. For instance,

Kp,ah means a proportional gain that use the feedback information of hip

to the control target of ankle. Experimental data, identification code, and

related results were included in a public GitHub repository https://github.

com/HuaweiWang/Stochastic Paper.
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Table 1: Identified control gains in the PD control structure

DET STO2 STO3 STO4

Kp,ankle 883.80 ± 0.08 766.04 ± 0.00 972.25 ± 1.84 970.91 ± 1.52

Kd,ankle 18.33 ± 0.01 20.33 ± 0.00 29.68 ± 1.25 30.23 ± 1.12

Kp,hip 222.05 ± 0.01 224.24 ± 0.00 236.58 ± 0.57 236.94 ± 0.58

Kd,hip 8.99 ± 0.00 7.84 ± 0.00 10.57 ± 0.03 10.56 ± 0.03

Ref,ankle 0.0014 ± 0.00 0.0026 ± 0.00 0.0007 ± 0.00 0.0007 ± 0.00

Ref,hip -0.0005 ± 0.00 -0.0006 ± 0.00 -0.0015 ± 0.00 -0.0016 ± 0.00

Table 2: Identified control gains in the FPD control structure

DET STO2 STO3 STO4

Kp,aa 341.49 ± 0.57 431.78 ± 5.17 454.75 ± 37.77 453.08 ± 34.30

Kp,ah 412.23 ± 0.47 336.78 ± 4.23 318.62 ± 28.74 322.54 ± 27.21

Kd,aa 68.84 ± 0.10 59.35 ± 0.85 55.29 ± 5.58 56.30 ± 4.86

Kd,ah 47.65 ± 0.06 49.07 ± 0.45 50.18 ± 0.89 49.48 ± 0.87

Kp,ha -105.74 ± 0.19 -81.13 ± 2.12 -74.46 ± 11.64 -73.15 ± 10.04

Kp,hh 364.04 ± 0.16 339.79 ± 1.24 334.14 ± 9.25 335.36 ± 8.71

Kd,ha 19.93 ± 0.04 17.29 ± 0.31 16.15 ± 1.74 16.29 ± 1.44

Kd,hh 23.44 ± 0.02 24.09 ± 0.20 24.50 ± 0.34 24.19 ± 0.33

Ref,ankle -0.0005 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00

Ref,hip -0.0052 ± 0.00 -0.0047 ± 0.00 -0.0046 ± 0.00 -0.0047 ± 0.00
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